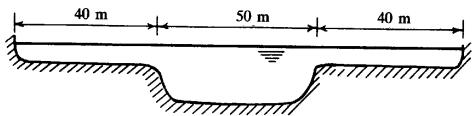
curse: Hydraulic (2) Exercise sheet (2)

<u>Q1</u>


A concrete-lined trapezoidal channel has a bed width of 3.5 m, side slopes at 45° to the horizontal, a bed slope 1 in 1000 and Manning roughness coefficient of 0.015. Calculate the depth of uniform flow when the discharge is 20 m³/s.

<u>Q2</u>

A trapezoidal channel with side slopes 1:1 and bed slope 1:1000 has a 3 m wide bed composed of sand (n = 0.02) and sides of concrete (n = 0.014). Estimate the discharge when the depth of flow is 2.0 m.

<u>Q3</u>

The figure shows the cross-section of a river channel passing through a flood plain. The main channel has a bank full area of 300 m^2 , a top width of 50 m, a wetted perimeter of 65 m and a Manning roughness coefficient of 0.025. The flood plains have a Manning roughness of 0.035 and the gradient of the main channel and plain is 0.00125. Determine the depth of flow over the flood plain at a flood discharge of $2470 \text{ m}^3/\text{s}$.

<u>Q4</u>

8. A trapezoidal channel with a bed slope of 0.005, bed width 3 m and side slopes 1:1.5 (vertical: horizontal) has a gravel bed (n = 0.025) and concrete sides (n = 0.013). Calculate the uniform flow discharge when the depth of flow is 1.5 m using (a) the Einstein, (b) the Pavlovskij, and (c) the Lotter methods.